推荐模型称作“推荐系统这个皇冠上的明珠”
“用户行为数据是推荐系统最常用,也是最关键的数据。用户的潜在兴趣、用户对物品的评价好坏都反映在用户的行为历史中”。
“协同大家的反馈、评价和意见一起对海量的信息进行过滤,从中筛选出用户可能感兴趣的信息”。
sim(i,j)=cos(i,j)=∣∣i∣∣×∥j∣∣i⋅j
Ru,p=∑s∈Swu,s∑sϵS(wu,s⋅Rs,p)
虽然说协同过滤是目前公认的最经典的推荐算法,但我们还是可以轻松找出它的缺点,那就是共现矩阵往往非常稀疏,在用户历史行为很少的情况下,寻找相似用户的过程并不准确。
这个时候你肯定觉得,矩阵分解不就是相当于一种 Embedding 方法嘛。没错,矩阵分解的主要过程,就是先分解协同过滤生成的共现矩阵,生成用户和物品的隐向量,再通过用户和物品隐向量间的相似性进行推荐。
// 建立矩阵分解模型
val als = new ALS()
.setMaxIter(5)
.setRegParam(0.01)
.setUserCol("userIdInt")
.setItemCol("movieIdInt")
.setRatingCol("ratingFloat")
//训练模型
val model = als.fit(training)
//得到物品向量和用户向量
model.itemFactors.show(10, truncate = false)
model.userFactors.show(10, truncate = false